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We obtained the intrinsic binding affinity for metal ions,

polyamines, and oligolysine peptides diffusely bound to base-

paired sites in DNA by monitoring the shift of the hairpin–

duplex equilibrium of the self-complementary DNA sequences,

which can be widely used for capturing cationic ligands bound

diffusely to nucleotide base pairs.

Nucleotide folding is accompanied by the association of cationic

molecules that shield the electronegative potential of nucleotide

phosphates in order to bring them into close proximity in space.

The majority of such cations nonspecifically bind to the phosphate

groups through Coulombic interactions in the condensation layer,

while the binding to defined nucleotide sites often occurs in the

tertiary folding and they may have catalytic roles.1 Metal ions in

the condensation layer predominantly associate diffusely with

base-paired nucleotides and exchange rapidly with bulk ions, in

which the charge neutralization is generally more effective as a

result of higher cation valence. Polyamines, such as spermidine and

spermine, and basic amino acid residues in proteins also contribute

to the nucleotide charge neutralization. Evaluations of the binding

affinity of these cationic ligands to nucleotides are important for

understanding the energetic contribution of the cation binding to

nucleotide folding events. Although cations bound at defined sites

have been well studied, providing, e.g., the association constant for

Mg2+ bound with tRNAs typically on the order of 105 M or

greater in the presence of a low amount of monovalent cation

(10 mM or less),2 the binding parameters for the diffusely bound

cations, which usually have a weaker binding affinity than those

associating at specific sites, have not been thoroughly studied due

to energetic coupling with the nucleotide folding3 and the limited

availability of experimental systems to capture the diffusely bound

cations.

Generally, cations stabilize the folded conformations of

nucleotides. According to the polyelectrolyte theory, stabilization

to a bimolecular duplex can be more effective than to a hairpin

structure of the same nucleotide length due to fewer inter-

phosphate repulsions in the loop nucleotides.4 This property in

nucleotides can lead to a shift in the hairpin–duplex equilibrium of

a self-complementary sequence toward the bimolecular duplex by

elevating the ionic strength.5 In this study, we explored the self-

complementary DNA sequences showing the structural transition

from a hairpin to a bimolecular duplex upon adding cationic

ligands, and evaluated the intrinsic binding affinity of the diffusely

bound cations by monitoring the DNA refolding reaction.

We tested several self-complementary DNA oligomer sequences,

and it was found from native PAGE (polyacrylamide gel

electrophoresis) experiments6 that the 14-mer sequence containing

the C/G base pairs in the middle of the sequence (d14cg,

59-GCAAGCCGGCTTGC-39) exhibited a hairpin structure at

10 mM NaCl, but formed a fully matched bimolecular duplex at

1 M NaCl and 37 uC (Fig. S1{). The structural transition on

elevating the sodium ion concentration resulted primarily from an

increase in the cation condensation around the central CG

nucleotides, being the loop nucleotides at 10 mM NaCl and

forming Watson–Crick base pairs at 1 M NaCl (Fig. 1A).5d The

PAGE experiments revealed an increase in the bimolecular duplex

fraction of d14cg with the increase in the NaCl concentration in a

two-state fashion (Fig. 1B), and the NaCl concentration required
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Fig. 1 (A) Illustration of the structural transition of a self-complemen-

tary DNA by the association of cationic ligands. (B) The changes in the

molar fractions of the hairpin form (indicated by H) and the bimolecular

duplex (indicated by B) of d14cg by changing the NaCl concentration

(mM) indicated at the top of the picture. (C) Dependence of the fraction of

the bimolecular duplex of d14cg on the NaCl (circles), MgCl2 (triangles),

and [Co(NH3)6]Cl3 (squares) concentrations. The broken lines represent

the curve fittings. (D) Plots of DGuT versus the net charge of the series of

metal ions (red), polyamines (blue), and oligolysine peptides (green).
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for forming the bimolecular duplex at a 0.5 molar fraction,

[NaCl]0.5, was 100 mM (Fig. 1C). The equilibrium shift to the

bimolecular duplex was also observed when other cations in the

series of metal ions (Mg2+ and [Co(NH3)6]
3+ as well as Na+),

polyamines (NH4
+ as the charged group of polyamines, putrescine,

spermidine, and spermine), and the oligolysine peptides (Lys

monomer, Lys2, Lys3, and Lys4 with free N and C termini) were

used under the 10 mM NaCl background at 37 uC.7 Lower cation

concentration with a higher net charge was required for the DNA

structural transition (Figs. 1C and S2{), and the [L]0.5 values, the

cationic ligand concentration for adopting the bimolecular duplex

at a 0.5 molar fraction, were similar among the cations with the

same net charge, e.g., the values of [L]0.5 for d14cg with the

trivalent cations of [Co(NH3)6]
3+, spermidine, and Lys3 were 12 ¡

2, 9.3 ¡ 0.7, and 7.3 ¡ 1.1 mM with a binding cooperativity

parameter (n) close to unity (0.97 ¡ 0.05, 1.0 ¡ 0.1, and 0.94 ¡

0.09, respectively).8 The free energy change DGuT at 37 uC,

describing the overall reaction of the DNA structural transition by

cation binding, was calculated using the equation DGuT = RTlnKT

(= nRTln[L]0.5 + RTlnCt), in which R is the gas constant and T is

the temperature. Linear correlation plots of DGuT versus the net

charge on the cationic ligand were observed regardless of the series

of metal ions, polyamines, and oligolysine peptides (Fig. 1D),

consistent with diffuse nonspecific electrostatic interactions with

the DNA.

To reveal the influences of the DNA refolding energy on the

cation binding parameters, the fully self-complementary DNA

sequences of different lengths ranging from 16-mer to 24-mer

containing the central CG sequence (d16cg, d18cg, d20cg, d22cg,

and d24cg, shown in Fig. 2A) were further examined.9 The

structural transition was also observed for these DNAs, and the

[L]0.5 value increased for the longer nucleotides (Table 1).

However, the [L]0.5 values for each sequence were similar among

the cations with the same net charge and their n values were close

to unity (Table S1{), as observed for d14cg. More importantly, the

linear plots of DGuT for each DNA versus the net charge of the

cation (m) showed a slope of 22.1 kcal mol21 (DGucharge) (Fig. 2B),

and the intercept differed among the DNA sequences responsible

for the intrinsic DNA refolding energy (DGurefold). The observation

suggests that DGuT can be represented by the sum of the intrinsic

binding constant of cation with the net charge of m (mDGucharge)

and DGurefold, and DGucharge is energetically decoupled from

the nucleotide folding. According to the free energy bonus of

2.1 kcal mol21 (corresponding to a 31-times greater binding

affinity at 37 uC) per single net positive charge on the cationic

ligands, the intrinsic binding constants for the cations with the net

charge of +1, +2, +3, and +4 (mDGucharge) at 10 mM NaCl and

37 uC were calculated to be 31, 0.98 6 103, 3.0 6 104, and 0.95 6
106 M21, respectively, despite the DNA sequence. These estima-

tions are in good agreement with previous reports using polymer

nucleotides or tRNAs in which the cation binding can be regarded

as independent of the nucleotide folding, therefore providing the

intrinsic cation binding parameter. The apparent association

constant obtained in a solution containing low NaCl concentra-

tions (ca. 10 mM) at 25 uC to 20 uC for the nonspecifically bound

Mg2+ is on the order of 103,2,10 that for the putrescine binding is on

the order of 103 M21 and the value increases by about 30 times

with the increasing number of amino groups on the polyamine;11

those for the basic oligopeptides with the net charge of +2, +3, and

+4 are on the order of 103, 104, and 106 M21, respectively.12

Accordingly, it is concluded that our analyses using PAGE provide

the intrinsic cation binding parameters which are energetically

uncoupled with the nucleotide folding. Notably, although the

cations shifting the hairpin–duplex equilibrium are supposedly

bound near the CG nucleotides (Fig. 1A), comparisons with the

previous results using polymer nucleotides and tRNAs suggest an

insignificant influence of the nucleotide sequence on the cation

binding affinity.

In summary, we evaluated the binding affinities of metal ions,

polyamines, and oligolysine peptides diffusely bound to DNA

base pairs by monitoring how cationic ligands shifted the

hairpin–duplex equilibrium of the self-complementary DNA

Fig. 2 (A) Oligonucleotide sequences of d16cg, d18cg, d20cg, d22cg, and

d24cg, fluorescently labeled with 6-FAM at their 59-termini. (B) Plots of

DGuT versus the net charge on the cationic ligands for d14cg (red), d16cg

(blue), d18cg (green), d20cg (orange), d22cg (cyan), and d24cg (gray). Each

DGuT value was averaged among the different series of cationic molecules

and the error bar indicates the standard deviation for the cations with the

same net charge.

Table 1 The values of DGuT (kcal mol21) at 37 uC for the cationic ligand binding to the DNAsa

Ligandb d14cg d16cg d18cg d20cg d22cg d24cg

Na+ (+1) 6.2 ¡ 0.2 6.7 ¡ 0.1 7.1 ¡ 0.1 nd nd nd
NH4

+ (+1) 6.3 ¡ 0.2 6.6 ¡ 0.1 6.9 ¡ 0.1 nd nd nd
Lys (+1) 6.2 ¡ 0.1 6.3 ¡ 0.2 6.6 ¡ 0.3 nd nd nd
Mg2+ (+2) 4.3 ¡ 0.4 4.8 ¡ 0.3 5.4 ¡ 0.2 6.0 ¡ 0.3 6.6 ¡ 0.2 7.2 ¡ 0.1
Putrescine (+2) 4.3 ¡ 0.3 4.8 ¡ 0.5 6.2 ¡ 0.3 6.2 ¡ 0.3 6.5 ¡ 0.2 7.2 ¡ 0.2
Lys2 (+2) 3.8 ¡ 0.5 4.6 ¡ 0.3 5.4 ¡ 0.3 6.0 ¡ 0.3 6.5 ¡ 0.3 7.1 ¡ 0.2
Co(NH6)3+ (+3) 1.8 ¡ 0.4 2.5 ¡ 0.3 2.9 ¡ 0.5 3.9 ¡ 0.5 4.1 ¡ 0.1 4.4 ¡ 0.1
Spermidine (+3) 1.3 ¡ 0.4 1.5 ¡ 0.5 2.9 ¡ 0.4 3.6 ¡ 0.4 4.0 ¡ 0.6 4.4 ¡ 0.3
Lys3 (+3) 1.7 ¡ 0.7 2.5 ¡ 0.8 3.1 ¡ 0.7 3.6 ¡ 0.4 4.3 ¡ 0.3 5.1 ¡ 0.3
Spermine (+4) nd nd 1.4 ¡ 0.4 1.9 ¡ 0.5 2.4 ¡ 0.3 3.0 ¡ 0.6
Lys4 (+4) nd nd 1.6 ¡ 0.8 2.3 ¡ 1.0 2.5 ¡ 0.8 3.2 ¡ 0.3
a nd indicates that the parameter could not be determined due to an affinity too high or too low to obtain a reliable value. b The value in
parentheses indicates the net charge of the ligand.7
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oligonucleotides. Although the number of cations bound with

nucleotides usually differs depending on the valence and the

chemical structure of the cation, our approach provides the

intrinsic binding affinity with a lower binding cooperativity. This

could have resulted from the restriction in the binding site near the

central CG nucleotides because what we measured by this

approach was only the cations required for the structural

transition. Because the PAGE experiments are simple and quite

useful, the nucleotide refolding study can be widely used for

capturing diffusely bound cations even when they are bound very

weakly, as observed for monovalent cations. In addition, it also

enables the measurement of cations bound to other structures

formed by short nucleotides. Such binding parameters are also

useful for theoretical calculations and computational simulations

involving nucleotide folding and cation binding.
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